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Abstract

Let (X,B, µ, T ) be a measure preserving dynamical system on a
finite measure space. Consider the maximal function R∗ : (f, g) ∈
Lp × Lq → R∗(f, g)(x) = sup

n

f(T nx)g(T 2nx)

n
. We prove that if p and

q are greater or equal than one and 1
p + 1

q < 2 then R∗ maps Lp × Lq

into any Lr as long as 0 < r < 1/2. This implies that R∗(f, g) is finite

almost everywhere and f(T nx)g(T 2nx)
n → 0 for a.e. x as n → ∞.

1 Introduction

It is a well known fact that the Hardy–Littlewood maximal function

H∗ : f ∈ L1 → H∗f(x) = sup
t

1

2t

∫ t

−t

f(x + u)du
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maps L1 functions into weak L1. In other words H∗ satisfies a weak type (1, 1)
inequality. The bilinear Hardy–Littlewood maximal function was introduced
by Alberto Calderón in the 1960’s. It is defined for f, g measurable functions
as

M∗(f, g)(x) = sup
t

1

2t

∫ t

−t

f(x + s)g(x + 2s)ds.

A simple application of Hölder’s inequality combined with the weak type
(1, 1) property of H∗ shows that M∗(f, g) is almost everywhere finite if f ∈
Lp, g ∈ Lq and 1

p
+ 1

q
≤ 1. Calderón made a famous conjecture by stating that

M∗ is integrable as soon as f and g are in L2. In [6], M. Lacey built his work
with C. Thiele [7] about the celebrated Carleson–Hunt theorem on the almost
everywhere convergence of Fourier series to solve Calderón’s conjecture. He
showed that M∗ maps actually Lp ×Lq into Lr as long as p, q ≥ 1, 1

p
+ 1

q
= 1

r

and r > 2/3. The intriguing aspect of this deep result is the bound 2/3.
What could happen if 3/2 < 1

p
+ 1

q
≤ 2? Unfortunately, Lacey’s method

fails for r ≤ 2/3 as he indicated in his paper. One can understand why the
bilinear maximal function is more difficult to control when one looks at the
trilinear Hardy–Littlewood maximal function

R∗(f, g, h)(x) = sup
t

1

2t

∫ t

−t

f(x + s)g(x + 2s)h(x + 3s)ds.

The dependence of the monomials x + s, x + 2s, and x + 3s allows to obtain
in a relatively simple way negative results on the range of the functions f, g
and h (see [3]). Positive results have been obtained by Demeter, Thiele and
Tao in [4] beyond the usual bounds given by Hölder’s inequality by extending
Lacey’s method. However, in the case of the bilinear Hardy–Littlewood M∗,
primarily because of the independence of the monomials x + s and x + 2s
there was no negative result known close to L1. Our purpose in this paper is
to bring some new ideas and results to these problems by using the ergodic
setting.
One considers an ergodic measure preserving transformation on a non-atomic
probability measure space and one looks at the maximal function

M(f, g)(x) = sup
N

1

2N + 1

N∑

n=−N

f(T nx)g(T 2nx)

for functions f ∈ Lp and g ∈ Lq. The equivalent problem in this setting is to
find the range of values p, q ≥ 1 for which M(f, g)(x) < ∞ a.e. A transference
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argument can bring us back to the bilinear maximal function. In Ergodic
Theory a good indicator of the behavior of the averages is generally given by

the tail of the averages, i.e. the term
f(TNx)g(T 2Nx)

2N + 1
, when one averages

along all natural numbers. For instance, the maximal function associated

with the tail of the ergodic averages sup
n

f(T nx)

n
, satisfies similar weak type

inequalities as the maximal function for the ergodic averages. There is also

another obvious reason to consider sup
n

f(T nx)g(T 2nx)

n
since we have

M(f, g)(x) ≥ sup
N

f(TNx)g(T 2Nx)

2N + 1
.

It is normal then to try to find out first what happens to the maximal function

R∗(f, g)(x) = sup
n

f(T nx)g(T 2nx)

n
.

The main result of this paper is the following theorem.

Theorem 1. Let (X,B, µ, T ) be a measure preserving transformation on a

probability measure space. Then, for all p, q ≥ 1 such that 1
p

+ 1
q

< 2, R∗

maps Lp × Lq into Lr as soon as 0 < r < 1/2.

In [2] we show that there are functions (f, g) ∈ L1×L1 for which R∗(f, g)
is not finite almost everywhere. Since Theorem 1 implies that R∗(f, g) is
finite a.e. for (f, g) ∈ Lp × Lq when p, q ≥ 1 and 1

p
+ 1

q
< 2 we have a

complete characterization of the range of values (p, q) for which R∗(f, g) is
finite a.e.

Theorem 1 is an immediate consequence of the following maximal in-
equality whose proof is given in Section 3:

Theorem 2. Given p > 1 there exists a universal finite constant C∗
p such that

if (X,B, µ, T ) is any invertible dynamical system on a probability measure

space (X,B, µ) then the following holds. For every function f ∈ Lp, for

every g ∈ L1, and for each s > 0 we have

µ
{
x : sup

0<l

f(T lx)g(T 2lx)

l
≥ s

}
≤ C∗

p

√
||f ||p||g||1

s
. (1)
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Therefore, for such functions f and g we have

f(T lx)g(T 2lx)

l
→ 0 as l → ∞. (2)

Furthermore, for 1 < p < 2 there exists a universal constant C such that

C∗
p ≤ C

p − 1
.

A similar maximal inequality can be obtained if one considers instead
f ∈ L1 and g ∈ Lp.

Theorem 2 implies easily Theorem 1. Because of the finiteness of the

measure µ, we have

∫
|R∗(f, g)|rdµ ∼

∞∑

k=1

µ{x : |R∗(f, g)(x)| > k1/r} which

is finite by (1) as soon as 1/2r > 1, or equivalently if 0 < r < 1/2. �

Theorem 2 shows that for the maximal function R∗ one can go beyond
2/3 and up to 1/2. In fact, R∗ will map functions in Lp ×Lq into any of the
Lr spaces as long as 1 ≤ 1

p
+ 1

q
< 2 and 0 < r < 1/2. For 1 ≤ 1

p
+ 1

q
< 3/2

it does not recover the full strength of Lacey’s result as r is just between 0
and 1/2. But it provides with a different approach the finiteness of R∗ for
all cases of p and q including those not covered by Lacey’s result.

Theorem 2 follows by transference from the following result on the inte-
gers.

Lemma 3. Given p > 1 there exists a universal constant Cp such that for

each s > 0, for every L ∈ N and for all K ∈ N, K > 6L we have

#
{
j ∈ N : 2L ≤ j ≤ K−1−4L, sup

0<l≤L

al+jb2l+j

l
≥ s

}
≤ Cp

√
‖a‖p

p‖b‖1

s
(3)

for all a = (ai) ∈ lp and b = (bi) ∈ l1 satisfying

1 ≤ |ai|, |bi| <
√

sL/8 for all i = 0, ..., K − 1. (4)

Furthermore, for 1 < p < 2 there exists a universal constant C ′ such that

Cp ≤
C ′

p − 1
. (5)
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Remark 1. In a previous version of this paper the maximal inequality in
Theorem 2 was established for functions f and g with the additional as-
sumptions |f | > 1, and |g| > 1. We eliminated these restrictions in [1]. Our
current treatment of this question is a mixture of the approach suggested by
the referee of this paper and the one presented in [1].

We explain at the end of the paper (see Remarks 2 and 3) why the
maximal inequality in Theorem 2 does not extend to measure preserving
systems on σ-finite measure spaces.

2 Proof of Lemma 3

In this section we prove Lemma 3. The proof is divided into several steps.

2.1 Reduction to sequences taking finite values being

powers of 2

It is sufficient to consider only non-negative sequences a and b supported on
the interval [0, K − 1]. This means that ai = bi = 0 when i does not belong
to the interval [0, K − 1]. In this first step we reduce the proof of Lemma
3 to sequences taking finite values in {2j : j ∈ N}. More precisely, we will
assume first that ai ∈ {2n : n ∈ N} and bi ∈ {2k : k ∈ N}. Moreover, we also
make the assumption that s = 2γ′

with a γ′ ∈ Z.
Given L ∈ N and K > 6L we will show that for the above specific

sequences

#
{

j ∈ N : 2L ≤ j ≤ K − 1 − 4L; sup
0<l≤L

al+jb2l+j

l
≥ s

}
≤ (6)

Cp

2(p+2)/2

√
‖a‖p

p‖b‖1

s

holds with Cp independent of L and s provided that a and b satisfy (9), which
is a technical consequence of (4).

We can observe that if (6) holds for sequences a and b taking values which
are powers of 2 then (3) will also hold for sequences with finite support taking
values greater than one. Indeed, if ai ≥ 1 and 2ni ≤ ai < 2ni+1 for some
ni ∈ N∪ {0} then the sequence a defined at i as 2ni+1 is taking values which
are powers of 2 and ai < ai ≤ 2ai. Hence ‖a‖p

p ≤ 2p‖a‖p
p and with similar
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consideration we would have ‖b‖1 ≤ 2‖b‖1. We also choose γ′ ∈ Z such that
2γ′+1 > s ≥ 2γ′

and set s = 2γ′

.
It is also clear that

#
{

j ∈ N : 2L ≤ j ≤ K − 1 − 4L, sup
0<l≤L

al+jb2l+j

l
≥ s

}
≤ (7)

#
{

j ∈ N : 2L ≤ j ≤ K − 1 − 4L, sup
0<l≤L

al+jb2l+j

l
≥ s

}
≤

(using (6))

Cp

2(p+2)/2

√
‖a‖p

p‖b‖1

s
≤ Cp

√
‖a‖p

p‖b‖1

s
. (8)

For ease of notation in the sequel we denote by a and b the modified
sequences a and b consisting of powers of 2 or zero. Similarly we use s = 2γ′

instead of s.
After these adjustments we can suppose based on (4) that (for the mod-

ified a, b and s) we have

1 < ai, bi < NL =
√

sL. (9)

Recall that we also assumed that

6L < K. (10)

Suppose i ∈ {0, ..., K − 1 − 2L} and there exists l such that

al+ib2l+i

l
≥ s. (11)

Then by (9)
sL

l
≥ N2

L

l
≥ al+ib2l+i

l
≥ s,

that is, L ≥ l. Therefore, l + i, 2l + i ∈ {0, ..., K − 1}.
Choose (an,i) and (bk,i) such that ai =

∑
n≤NL

an,i, bi =
∑

k≤NL
bk,i, an,i ∈

{0, 2n}, and bk,i ∈ {0, 2k}. Set

In,k =
{
i ∈ {2L, ..., K − 1 − 4L} : sup

0<l≤L

an,l+ibk,2l+i

l
≥ s

}
. (12)
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If
an,l+ibk,2l+i

l
≥ s > 0 (13)

then an,l+i = 2n and bk,2l+i = 2k. Therefore,

2n+k

s
≥ l, that is, 2n+k−γ′ ≥ l ≥ 1 > 0, (14)

which implies n + k − γ′ ≥ 0. Moreover, for these an,l+i and bk,2l+i from (9)
it also follows that

L >
an,l+ibk,2l+i

s
= 2n+k−γ′

. (15)

This “length”, 2n+k−γ′

will serve as a natural “unit” in our construction.
Set for t ∈ N

In,k,t = In,k ∩ {t2n+k−γ′

, ..., (t + 1)2n+k−γ′ − 1}, and (16)

An,k,t = {t2n+k−γ′

, ..., (t + 3)2n+k−γ′ − 1}.

By the introduction of the sequences an,i and bk,i we want to split the ranges
of a and b into some standardized “subsequences” and then use the sets
In,k,t and a counting argument in (17-18) to obtain an upper estimate of the
number of those indices where (13) holds. The “t-range” of a block In,k,t is
greater or equal than l, see (14).

Observe that if i ∈ In,k,t then there exists l ≤ 2n+k−γ′

such that an,l+i =
2n, bk,2l+i = 2k and l + i, 2l + i ∈ An,k,t. We want to give an upper
estimate of #In,k,t. If an,i = 2n for some i and bk,j = 2k for some j
with i, j ∈ {t2n+k−γ′

, ..., (t + 3)2n+k−γ′ − 1} then there can be at most one
i′ ∈ {t2n+k−γ′

, ..., (t + 3)2n+k−γ′ − 1} such that for i′ there exists l such that
i′+l = i and 2l+i′ = j. Indeed, in this case l = j−i and i′ = i−(j−i) = 2i−j.

2.2 Finding an upper bound of the cardinality of the

sets In,k,t, the counting argument

Denote by N (n, k, t, a) the number of those i ∈ {t2n+k−γ′

, ..., (t+3)2n+k−γ′ −
1}∩Z for which an,i = 2n. Similarly, N (n, k, t, b) denotes the number of those
j ∈ {t2n+k−γ′

, ..., (t + 3)2n+k−γ′ − 1} ∩ Z for which bk,j = 2k. Now,

#In,k,t ≤ N (n, k, t, a)N (n, k, t, b). (17)
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On the other hand,

N (n, k, t, a) =

∑
i∈An,k,t

ap
n,i

2np
, and (18)

N (n, k, t, b) =

∑
i∈An,k,t

bk,i

2k
.

Therefore, by (17)

#In,k,t ≤
1

2np+k

∑

i∈An,k,t

ap
n,i ·

∑

i∈An,k,t

bk,i. (19)

2.3 Refining the sets An,k,t with disjoint subsets A′
n,k,t

Set
A′

n,k,t = {t2n+k−γ′

, ..., (t + 1)2n+k−γ′ − 1}. (20)

While for n, k fixed the sets An,k,t overlap, the sets A′
n,k,t are disjoint and

An,k,t = A′
n,k,t ∪ (A′

n,k,t + 2n+k−γ′

) ∪ (A′
n,k,t + 2 · 2n+k−γ′

).

Set

T (n, k) =

{
2, 3, ...,

⌊
K − 1 − 3L

2n+k−γ′

⌋}
, (21)

and T ′(n, k) will consist of those t′ for which A′
n,k,t′ ⊂ ∪t∈T (n,k)An,k,t. It is

useful to keep in mind that by (14) and (15) we have L > 2n+k−γ′ ≥ 1 and

{2L, 2L + 1, ..., K − 1 − 4L} ⊂
⋃

t∈T (n,k)

An,k,t ⊂ {0, ..., K − 1}.

2.4 Separation of two estimate cases, the set I∗∗

The constant C̃a,b will be specified later in (34).
Denote by I∗∗∗

n the set of those i for which there exists a k and t ∈ T ′(n, k)
such that i ∈ A′

n,k,t and

∑

i′∈A′

n,k,t

ap
n,i′ > (#A′

n,k,t)C̃a,b. (22)
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Due to dyadic grid properties, for fixed n and k the sets A′
n,k,t are disjoint

for different t’s, while - still keeping n fixed - if for different k’s such sets
intersect then one contains the other. Using this property one can choose a
disjoint system of maximal intervals {A′

n,kj ,tj
} such that I∗∗∗

n = ∪jA
′
n,kj ,tj

. The
intervals A′

n,kj ,tj
are maximal in the sense that for each j if A′

n,k,t ) A′
n,kj ,tj

for a t ∈ T ′(n, k) then (22) does not hold.
Now, (22) implies

K−1∑

i=0

ap
n,i ≥

∑

i∈I∗∗∗n

ap
n,i > (#I∗∗∗

n )C̃a,b. (23)

If A′
n,kj ,tj

is one of the intervals considered above then let

B′
n,kj ,tj

def
=A′

n,kj,tj
∪ (A′

n,kj ,tj
− 2n+kj−γ′

) ∪ (A′
n,kj ,tj

− 2 · 2n+kj−γ′

).

We put

I∗∗
n =

⋃

j

B′
n,kj ,tj

.

From (23) it follows that

3
K−1∑

i=0

ap
n,i > #(I∗∗

n )C̃a,b. (24)

Set I∗∗ = ∪nI∗∗
n . Then adding (24) for n’s we obtain

3

K−1∑

i=0

ap
i > (#I∗∗)C̃a,b. (25)

2.5 The estimate for the set I∗

If A′
n,k,t+j′ ⊂ I∗∗∗

n for a j′ = 0, 1, 2, then using the definition of the sets B′
n,kj ,tj

and the maximality of the sets A′
n,kj ,tj

one would obtain A′
n,k,t ⊂ I∗∗

n .

Hence, if t ∈ T ′(n, k), A′
n,k,t 6⊂ I∗∗

n then A′
n,k,t+j′ 6⊂ I∗∗∗

n holds for j′ =
0, 1, 2. This means by (22) that

if A′
n,k,t 6⊂ I∗∗

n and A′
n,k,t′ ⊂ An,k,t then

∑

i∈A′

n,k,t′

ap
n,i ≤ (#A′

n,k,t′)C̃a,b. (26)
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From (26) it follows that

if t ∈ T ′(n, k), A′
n,k,t 6⊂ I∗∗ = ∪n′I∗∗

n′ and A′
n,k,t′ ⊂ An,k,t then (27)

∑

i∈A′

n,k,t′

ap
n,i ≤ (#A′

n,k,t′)C̃a,b.

Denote by T ∗∗(n, k) the set of those t ∈ T ′(n, k) for which A′
n,k,t 6⊂ I∗∗. Set

I∗∗
n,k = In,k \ I∗∗. Clearly,

I∗∗
n,k ⊂

⋃

t∈T ∗∗(n,k)

In,k,t ⊂
⋃

t∈T ∗∗(n,k)

A′
n,k,t. (28)

Denote by T ′′(n, k) the set of those t′ ∈ T ′(n, k) for which there exists t ∈
T ∗∗(n, k) satisfying A′

n,k,t′ ⊂ An,k,t. For t′ ∈ T ′′(n, k) one can apply (26) and
(27).

Set

Cn,k,t = An,k,t ∪ (An,k,t − 2n+k−γ′

) ∪ (An,k,t − 2 · 2n+k−γ′

).

By (19) and (28) we have

#I∗∗
n,k ≤

∑

t∈T ∗∗(n,k)

#In,k,t ≤ (29)

∑

t∈T ∗∗(n,k)

1

2np+k

∑

i∈An,k,t

ap
n,i

∑

i∈An,k,t

bk,i ≤

∑

t∈T ′′(n,k)

3

2np+k

∑

i∈A′

n,k,t

ap
n,i

∑

i∈Cn,k,t

bk,i. (30)

Recall that #(A′
n,k,t) = 2n+k−γ′

= 2n+k/s when t ∈ T ′(n, k).
By (27), (29), and (30) we have

#I∗∗
n,k ≤

∑

t∈T ′′(n,k)

3

s2n(p−1)

∑
i∈A′

n,k,t
ap

n,i

#A′
n,k,t

∑

i∈Cn,k,t

bk,i ≤ (31)

∑

t∈T ′′(n,k)

3

s2n(p−1)
C̃a,b

∑

i∈Cn,k,t

bk,i ≤
27

s2n(p−1)
C̃a,b

K−1∑

i=0

bk,i.
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Set
I∗ =

⋃

n,k

In,k \ I∗∗ =
⋃

n,k

I∗∗
n,k.

By (31) we have

#I∗ ≤
∑

n

27

s2n(p−1)
C̃a,b

∑

k

K−1∑

i=0

bk,i ≤
27

s(1 − 2−(p−1))
C̃a,b

K−1∑

i=0

bi. (32)

2.6 Conclusion of the proof of Lemma 3

Now, by using (25) and (32) we have

#
(⋃

n,k

In,k

)
≤ #

(⋃

n,k

(In,k \ I∗∗)
)

+ #I∗∗ = #I∗ + #I∗∗ ≤ (33)

27

s(1 − 2−(p−1))
C̃a,b

K−1∑

i=0

bi + 3

∑K−1
i=0 ap

i

C̃a,b

.

Choose

C̃a,b =

√
s
∑K−1

i=0 ap
i∑K−1

i=0 bi

=

√
s‖a‖p

p

‖b‖1

. (34)

Then we obtained

#
( ⋃

n,k

In,k

)
≤

(
27

1 − 2−(p−1)
+ 3

)√
‖a‖p

p‖b‖1

s
=

Cp

2(p+2)/2

√
‖a‖p

p‖b‖1

s
. (35)

Using (6), (7-8) and (12) we can infer (3). By elementary calculus from (35)
one can also deduce the existence of a constant C ′ for which (5) holds when
1 < p < 2. �

3 Proof of Theorem 2 by a transference ar-

gument

The transference argument is first applied for bounded functions f and g.
Moreover, we also make the auxiliary assumption that g is bounded away
from zero. Later we remove these extra assumptions. For f some standard
duality tricks are applicable, while for g with the L1 norm, slightly modified
arguments are needed.
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3.1 The transference argument

Let (X,B, µ, T ) be an invertible dynamical system on a probability measure
space and let f ∈ Lp, g ∈ L1. Usage of |f | and |g| instead of f and g increases
the left handside of (1) without changing its right handside. Therefore, in
the sequel we assume that f and g are nonnegative.

First we suppose that there exists M > 1 such that 0 ≤ f, g ≤ M and
g ≥ 1/M everywhere. If ||f ||p = 0 then f = 0 a. e. and we have nothing to
prove.

Put

F =
f

||f ||p
+ 1 and G = M · g. (36)

Set

M∗ = max
{ M

||f ||p
+ 1, M2

}
.

Then 1 ≤ F, G ≤ M∗ holds everywhere. Given s′ > 0 we choose L so large
that M∗ <

√
s′L/8 and choose K > 6L. In (2) we have s > 0 given, but we

will see later that we need to start with a suitable s′ which will equal sM/||f ||p
in the end. For any given x ∈ X consider the sequences ai = F (T ix),
bi = G(T ix), for i = 0, ..., K − 1 and ai = bi = 0 for i ∈ Z \ {0, ..., K − 1}.
Since (4) is satisfied we can apply Lemma 3 to obtain the inequality

#
{

j ∈ N : 2L ≤ j ≤ K − 1 − 4L, sup
0<l≤L

F (T l+jx)G(T 2l+jx)

l
≥ s′

}
≤

Cp

√(∑K−1
i=0 |F (T ix)|p

) ∑K−1
i=0 |G(T ix)|

s′
.

By integrating this inequality with respect to µ and using that T j is
measure preserving and hence the integral of the left handside takes the
same value for all j’s we infer

(K − 6L)µ
{
x : sup

0<l≤L

F (T lx)G(T 2lx)

l
≥ s′

}
≤

Cp

∫

X

√(∑K−1
i=0 |F (T ix)|p

)∑K−1
i=0 |G(T ix)|

s′
dµ.
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Dividing by K − 6L one obtains

µ
{
x : sup

0<l≤L

F (T lx)G(T 2lx)

l
≥ s′

}
≤ (37)

Cp

∫

X

√(∑K−1
i=0 |F (T ix)|p

)∑K−1
i=0 |G(T ix)|

(K − 6L)s′(K − 6L)
dµ.

Now we can notice that by the pointwise ergodic theorem if we denote
by I the σ-field of T -invariant sets then the averages 1

K−6L

∑K−1
i=0 |G(T ix)|

converge a.e. to E[|G|, I](x), the conditional expectation of |G| with re-
spect to I. Furthermore, the averages 1

K−6L

∑K−1
i=0 |F (T ix)|p converge a.e. to

E[|F |p, I](x) as K → ∞. Since F and G are bounded Lebesgue’s dominated
convergence theorem applies and we have obtained the inequality

µ
{

x : sup
0<l≤L

F (T lx)G(T 2lx)

l
≥ s′

}
≤ Cp

∫

X

√
E[|F |p, I](x)E[|G|, I](x)

s′
dµ.

(38)
By using Hölder’s inequality the right handside of (38) is bounded above by

Cp

√
1

s′

√∫

X

E[|F |p, I](x)dµ

√∫

X

E[|G|, I](x)dµ.

Using the integral preserving property of the conditional expectation this last
term equals

Cp

√
1

s′

√∫

X

|F |pdµ

√∫

X

|G|dµ = Cp

√
‖F‖p

p‖G‖1

s′
.

We have reached then the following inequality

µ
{
x : sup

0<l≤L

F (T lx)G(T 2lx)

l
≥ s′

}
≤ Cp

√
‖F‖p

p‖G‖1

s′
. (39)

Next we see the consequences of (39) for our original functions f and g.
Since Cp does not depend on L, first one can let L → ∞. Recall that by
Hölder’s inequality if 1

p
+ 1

q
= 1 then (α + β) ≤ 21/q(αp + βp)1/p and this

yields

||F ||pp =

∫

X

( f

||f ||p
+ 1

)p

dµ ≤ 2p/q

∫

X

( f p

||f ||pp
+ 1

)
dµ = 2

p

q
+1. (40)
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Rewriting (39) and letting L → ∞ we obtain

µ
{
x : sup

0<l

f(T lx)g(T 2lx) · M
l · ||f ||p

≥ s′
}
≤ (41)

µ
{
x : sup

0<l

F (T lx)G(T 2lx)

l
≥ s′

}
≤

(using (40))

Cp

√
||F ||pp||G||1

s′
≤ Cp

√
2

p

q
+1||g||1 · M

s′
. (42)

Choosing s′ = s·M
||f ||p

we obtain from (41-42)

µ
{
x : sup

0<l

f(T lx)g(T 2lx)

l
≥ s

}
≤ Cp

√
2

p

q
+1||f ||p||g||1

s
=

Cp2
p

2q
+ 1

2

√
||f ||p||g||1

s
.

Hence we can choose C∗
p = Cp2

p

2q
+ 1

2 . This constant does not depend on M .
The general case for arbitrary nonnegative functions f ∈ Lp and g ∈ L1 can
be obtained by approximating f by functions of the form fM = min{f, M}
and g by min{max{g, 1

M
}, M}.

3.2 Second part of Theorem 2

It remains to prove that

f(T lx)g(T 2lx)

l
→ 0 as l → ∞. (43)

This follows by approximation. We give the details for sake of completeness.

Since (43) is equivalent to
|f(T lx)| · |g(T 2lx)|

l
→ 0 we can assume that f, g ≥

0. Set fM = min{f, M}, gM = min{g, M}. For all ε > 0 choose M such that
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∫
X

(f − fM)pdµ < ε,
∫

X
(g − gM)dµ < ε. Then

∣∣∣∣
f(T lx)g(T 2lx)

l

∣∣∣∣ ≤
∣∣∣∣
(f − fM)(T lx)(g − gM)(T 2lx)

l

∣∣∣∣ +

∣∣∣∣
fM(T lx)g(T 2lx)

l

∣∣∣∣ +

∣∣∣∣
f(T lx)gM(T 2lx)

l

∣∣∣∣ +

∣∣∣∣
fM(T lx)gM(T 2lx)

l

∣∣∣∣ ≤
∣∣∣∣
(f − fM)(T lx)(g − gM)(T 2lx)

l

∣∣∣∣ + M

∣∣∣∣
g(T 2lx)

l

∣∣∣∣ + M

∣∣∣∣
f(T 2lx)

l

∣∣∣∣ +
M2

l
.

The last three terms converge to zero almost everywhere as l → ∞. By (1)
the measure of the set of those x’s where the limit superior of the first term
is larger than s = ε can be estimated from above by C∗

p

√
ε2/ε = C∗

p

√
ε. Since

ε > 0 is arbitrary we obtain (43). �

Remark 2. It is natural to ask whether ||a||pp can be replaced by ||a||p in
(3). The answer is no since this would imply the following version of (37)

µ
{
x : sup

0<l≤L

F (T lx)G(T 2lx)

l
≥ s′

}
≤ (44)

Cp

∫

X

√(∑K−1
i=0 |F (T ix)|p

)1/p ∑K−1
i=0 |G(T ix)|

(K − 6L)s′(K − 6L)
dµ.

By the pointwise ergodic theorem the averages 1
K−6L

∑K−1
i=0 |G(T ix)| converge

a.e. to E[|G|, I](x) as K → ∞. Furthermore, the averages

1

K − 6L

( K−1∑

i=0

|F (T ix)|p
)1/p

=
1

(K − 6L)1− 1

p

( 1

K − 6L

K−1∑

i=0

|F (T ix)|p
)1/p

converge a.e. to 0 · (E[|F |p, I](x))1/p = 0. Since F and G are bounded by
Lebesgue’s dominated convergence theorem we would obtain that the right
hand side of (44) converges to zero as K → ∞ which is impossible for all
possible choices of F, G and s′.

Remark 3. One of the reasons why (1) does not hold on Z is because it is
not homogeneous with respect to µ. By this we mean that if one divides the
measure µ by N then the right hand side of (1) is not divided by N but by
a power of N , namely N1/2p+1/2.
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Theorem 2 holds for finite measure spaces as this can be derived from
probability measure spaces by simple computations. The constant Cp de-
pends then also on the total mass of the space X. However the failure of
(1) on Z indicates that Theorem 2 does not hold in general for measure
preserving systems on σ-finite measure spaces.

The authors wish to thank the referee for many useful comments, in
particular suggesting to state Lemma 3 for the integers, and the usage of
(40) in obtaining a homogeneous version of Theorem 2.

References

[1] I. Assani and Z. Buczolich, “A maximal inequality for the tail of
the bilinear Hardy-Littlewood function,” to appear in Contemp. Math.,
vol 485, 2009.

[2] I. Assani and Z. Buczolich, “The (L1, L1) bilinear Hardy-Littlewood
function and Furstenberg averages,” to appear in Rev. Mat. Iberoam.

[3] C. Demeter, “Divergence of combinatorial averages and the unbound-
edness of the trilinear Hilbert Transform,” Ergodic Theory Dynam. Sys-

tems, Volume 28, Issue 05, October 2008, pp 1453-1464.

[4] C. Demeter, T. Tao and C. Thiele, “Maximal multilinear opera-
tors,” Trans. Amer. Math. Soc. 360 (2008), no. 9, 4989-5042.

[5] P. Halmos, Lectures in Ergodic Theory, Chelsea Publishing Co., New
York, 1956.

[6] M. Lacey, “The bilinear maximal function maps into Lp, p > 2/3,”
Ann. of Math. (2) 151 (2000), no. 1, 35-57.

[7] M. Lacey and C. Thiele, “On Calderón’s conjecture,” Ann. of Math.

149 (1999), 475-496.

Department of Mathematics, University of North Carolina at Chapel Hill,
Chapel Hill, North Carolina 27599, USA
email: assani@email.unc.edu



Assani and Buczolich, (Lp, Lq) bilinear Hardy-Littlewood function 17
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