Convergence of ergodic averages for many group rotations

Zoltán Buczolich∗, Department of Analysis, Eötvös Loránd University, Pázmány Péter Sétány 1/c, 1117 Budapest, Hungary
email: buczo@cs.elte.hu
www.cs.elte.hu/~buczo

and

Gabriella Keszthelyi†, Department of Analysis, Eötvös Loránd University, Pázmány Péter Sétány 1/c, 1117 Budapest, Hungary
email: keszthelyig@gmail.com

November 3, 2014

Abstract

Suppose that G is a compact Abelian topological group, m is the Haar measure on G and $f : G \to \mathbb{R}$ is a measurable function. Given (n_k), a strictly monotone increasing sequence of integers we consider the nonconventional ergodic/Birkhoff averages

$$M_N^\alpha f(x) = \frac{1}{N+1} \sum_{k=0}^{N} f(x + n_k \alpha).$$

The f-rotation set is

$$\Gamma_f = \{ \alpha \in G : M_N^\alpha f(x) \text{ converges for } m \text{ a.e. } x \text{ as } N \to \infty. \}$$

∗This author was supported by the Hungarian National Foundation for Scientific Research K075242.
†This author was supported by the Hungarian National Foundation for Scientific Research K104178.

2010 Mathematics Subject Classification: Primary 22D40; Secondary 37A30, 28D99, 43A40.

Keywords: Birkhoff average, locally compact Abelian group, torsion, p-adic integers
We prove that if G is a compact locally connected Abelian group and $f : G \to \mathbb{R}$ is a measurable function then from $m(\Gamma_f) > 0$ it follows that $f \in L^1(G)$.

A similar result is established for ordinary Birkhoff averages if $G = \mathbb{Z}_p$, the group of p-adic integers.

However, if the dual group, \hat{G} contains “infinitely many multiple torsion” then such results do not hold if one considers non-conventional Birkhoff averages along ergodic sequences.

What really matters in our results is the boundedness of the tail, $f(x + nk\alpha)/k, k = 1, \ldots$ for a.e. x for many α, hence some of our theorems are stated by using instead of Γ_f slightly larger sets, denoted by $\Gamma_{f,b}$.

1 Introduction

The starting point of this paper is a result of the first listed author in [3] which states that if f is a (Lebesgue) measurable function on the unit circle \mathbb{T} and Γ_f denotes the set of those α’s for which the Birkhoff averages

$$M_\alpha^n f(x) = \frac{1}{n+1} \sum_{k=0}^{n} f(x + k\alpha)$$

converge for almost every x then from $m(\Gamma_f) > 0$ it follows that $f \in L^1(\mathbb{T})$. Hence $M_\alpha^n f$ converges for all $\alpha \in \mathbb{T}$.

In this paper we consider generalizations of this result to compact Abelian groups equipped with their Haar measure m. Theorem 1 implies that an analogous result is true even for non-conventional ergodic averages considered on a compact, locally connected Abelian group G.

On the other hand, if there is “sufficiently many multiple torsion” in the dual group \hat{G} then Theorem 6 implies that there are non-L^1 measurable functions f for which $m(\Gamma_f) = 1$ (in fact, $\Gamma_f = G$) if one considers non-conventional Birkhoff averages along ergodic sequences. Having lots of torsion in \hat{G} means that G is highly disconnected. In our opinion the most surprising result of this paper is Theorem 7 which states that if $G = \mathbb{Z}_p$, the group of p-adic integers and one considers the ordinary ergodic averages of a measurable function f then from $m(\Gamma_f) > 0$ it follows that $f \in L^1(G)$. The group \mathbb{Z}_p is zero-dimensional and all elements of its dual group, $\mathbb{Z}(p^\infty)$, are of finite order. If one considers a group G which is a countable product of \mathbb{Z}_p’s then there is enough “multiple torsion” (see Definition 3) in Γ_f and Theorem 6 implies that the result of Theorem 7 does not hold in these groups. If $M_\alpha^n f(x)$ converges then the tail $\frac{f(x + n\alpha)}{n} \to 0$. In our proofs the sets $\Gamma_{f,0}$
(and $\Gamma_{f,b}$), the sets of those α’s where $f(x + n\alpha) \to 0$, (or $|f(x + n\alpha)|$ is bounded) for a.e. x play an important role. Since $\Gamma_f \subset \Gamma_{f,0} \subset \Gamma_{f,b}$ from $m(\Gamma_f) > 0$ it follows that the other sets are also of positive measure and hence in the statements of Theorems 1 and 7 these sets are used. Again the tail of the ergodic averages plays an important role, like in [1], where we showed that for L^1 functions and ordinary ergodic averages the return time property for the tail may might fail and hence Bourgain’s return time property [2] does not hold in these situations.

The proof of Theorem 1 is a rather straightforward generalization of Theorem 1 in [3]. We provide its details, since they are also used with some non-trivial modifications in the proof of Theorem 7.

Next we say a few words about the background history and related questions to this paper. Answering a question raised by the first listed author of this paper P. Major in [9] constructed two ergodic transformations $S, T : X \to X$ on a probability space (X, μ) and a measurable function $f : X \to \mathbb{R}$ such that for μ a.e. x

$$\lim_{n \to \infty} \frac{1}{n+1} \sum_{k=0}^{n} f(S^k x) = 0,$$

and

$$\lim_{n \to \infty} \frac{1}{n+1} \sum_{k=0}^{n} f(T^k x) = a \neq 0.$$

M. Laczkovich raised the question whether S and T can be irrational rotations of \mathbb{T}. In Major’s example S and T are conjugate. Therefore, his method did not provide an answer to Laczkovich’s question.

The results of Z. Buczolich in [4] imply that for any two independent irrationals α and β one can find a measurable $f : \mathbb{T} \to \mathbb{R}$ such that $M_n^\alpha f(x) \to c_1$ and $M_n^\beta f(x) \to c_2$ for a.e. x with $c_1 \neq c_2$. In this case by Birkhoff’s ergodic theorem $f \not\in L^1(\mathbb{T})$. It is shown in [3] that for any sequence (α_j) of independent irrationals one can find a measurable $f : \mathbb{T} \to \mathbb{R}$ such that $f \not\in L^1(\mathbb{T})$, but $\alpha_j \in \Gamma_f$ for all $j = 1,\ldots$. By Theorem 1 of [3] from $f \not\in L^1(\mathbb{T})$ it follows that $m(\Gamma_f) = 0$. It was a natural question to see how large Γ_f could be for an $f \not\in L^1(\mathbb{T})$. In [14] R. Svetic showed that Γ_f can be c-dense for an $f \not\in L^1(\mathbb{T})$.

The question about the possible largest Hausdorff dimension of Γ_f for an $f \not\in L^1(\mathbb{T})$ remained open for a while until in [5] it was shown that there are $f \not\in L^1(\mathbb{T})$ such that $\dim_H(\Gamma_f) = 1$ (of course with $m(\Gamma_f) = 0$.)

For us motivation to consider non-conventional ergodic averages in this paper came from the project in [6] concerning almost everywhere convergence questions of Birkhoff averages along the squares.

It is also worth mentioning that ergodic averages of non-L^1 functions and rotations on \mathbb{T} were also considered in [13] and [12].
2 Preliminaries

We suppose that G is a compact Abelian topological group, the group operation will be addition. The dual group of the compact Abelian topological group G is denoted by \widehat{G}. By Pontryagin duality \widehat{G} is a discrete Abelian group. For $\gamma \in \widehat{G}$ the corresponding Fourier coefficient is

$$\widehat{f}(\gamma) = \int_{G} g(x) \gamma(-x)dm(x),$$

where m denotes the Haar measure on G. By the Parseval formula

$$\int_{G} f(x)\overline{g(x)}dm(x) = \sum_{\gamma \in \widehat{G}} \widehat{f}(\gamma)\overline{\widehat{g}(\gamma)} \text{ for } f, g \in L^2(G).$$

By [8, 24.25] or [11, 2.5.6 Theorem] if G is a compact Abelian group then G is connected if and only if \widehat{G} is torsion-free.

Suppose that p_1, p_2, \ldots is a sequence of prime numbers. Recall that the direct product $G = (Z/p_1) \times (Z/p_2) \times \ldots$ is compact and its dual group $\widehat{G} = (Z/p_1) \bigoplus (Z/p_2) \bigoplus \ldots$ is the direct sum with the discrete topology see [11, 2.2 p.36] or [8].

We denote by Z_p the group of p-adic integers and its dual group, the Prüfer p-group with the discrete topology will be denoted by $Z(p^\infty)$.

For other properties of topological groups we refer to standard textbooks like [7], [8] or [11].

Suppose that $f : G \to \mathbb{R}$ is a measurable function. We suppose that the group rotation $T_\alpha = x + \alpha, \; \alpha \in G$ is fixed.

Given a strictly monotone increasing sequence of integers (n_k) we consider the nonconventional ergodic averages

$$M_N^\alpha f(x) = \frac{1}{N+1} \sum_{k=0}^{N} f(x + n_k \alpha).$$

Of course, if $n_k = k$ we have the usual Birkhoff averages.

The f-rotation set is

$$\Gamma_f = \{ \alpha \in G : M_N^\alpha f(x) \text{ converges for m a.e. } x \text{ as } N \to \infty \}.$$
Scrutinizing the proof of this result one can see that the set

$$
\Gamma_{f,0} = \left\{ \alpha \in G : \frac{f(x + n_k \alpha)}{k} \to 0 \text{ for m.a.e. } x \right\}
$$

played an important role. It is obvious that $\Gamma_f \subset \Gamma_{f,0}$.

In [3] it was shown that from $m(\Gamma_{f,0}) > 0$ it follows that $f \in L^1(\mathbb{T})$, when the sequence $n_k = k$ is considered. In this paper we will also use the slightly larger set

$$
\Gamma_{f,b} = \left\{ \alpha \in G : \limsup_{k \to \infty} \frac{|f(x + n_k \alpha)|}{k} < \infty \text{ for m.a.e. } x \right\}. \quad (1)
$$

3 Main results

First we generalize Theorem 1 of [3] for compact, locally connected Abelian groups.

Theorem 1. If (n_k) is a strictly monotone increasing sequence of integers and G is a compact, locally connected Abelian group and $f : G \to \mathbb{R}$ is a measurable function then from $m(\Gamma_{f,b}) > 0$ it follows that $f \in L^1(G)$.

Remark 2. Since $\Gamma_{f,b} \supset \Gamma_{f,0} \supset \Gamma_f$ Theorem 1 implies that if one considers the non-conventional ergodic averages $M_{N}^\alpha f$ on a locally compact Abelian group for group rotations and $m(\Gamma_f) > 0$ then $f \in L^1(G)$.

Proof. Set $n_0 = 0$. First we suppose that G is connected. Given an integer K put

$$
G_{\alpha,K} = \{ x : |f(x + n_k \alpha)| < K \cdot k \text{ for every } k > K \}
$$

and $|f(x + n_k \alpha)| < K^2$ for $k = 0, \ldots, K$.

If $\alpha \in \Gamma_{f,b}$ then $m(G_{\alpha,K}) \to 1$ as $K \to \infty$.

Choose and fix K and $\varepsilon > 0$ such that the set

$$
B = \{ \alpha : m(G_{\alpha,K}) > \varepsilon \}
$$

is of positive m-measure. From the measurability of f it follows that B and the sets $g_{\alpha,K}$ are also measurable.

Set

$$
L_k(f) = \{ x \in G : |f(x)| > k \}. \quad (4)
$$

From $k > K$ and $x \in G_{\alpha,K} + n_k \alpha$ it follows that

$$
|f(x)| = |f(x - n_k \alpha + n_k \alpha)| < k \cdot K.
$$
Set $H_\alpha = G \setminus G_{\alpha,K}$, (keep in mind that K is fixed). From $k > K$ and $x \in L_{k,K}(f)$ it follows that $x \notin G_{\alpha,K} + n_k \alpha$, that is, $x \in H_\alpha + n_k \alpha$.

For $\alpha \in B$ we set $a(\alpha) = m(H_\alpha) < 1 - \varepsilon$, by (3). This implies $1/(1 - a(\alpha)) < 1/\varepsilon$.

For $\alpha \in B$ put

$$h(x, \alpha) = \begin{cases} 1 & \text{if } x \in H_\alpha, \\ -\left(\frac{a(\alpha)}{1-a(\alpha)}\right) & \text{if } x \notin H_\alpha. \end{cases}$$

(5)

For $\alpha \notin B$ set $h(x, \alpha) = 0$ for any $x \in G$.

Then $h(x, \alpha)$ is a bounded measurable function defined on $G \times G$ and

$$\int_G h(x, \alpha)dm(x) = 0 \text{ for any } \alpha \in G.$$ (6)

From $k > K$ and $x \in L_{k,K}(f)$ it follows that $x \in H_\alpha + n_k \alpha$ for any $\alpha \in B$. This implies

$$h(x - n_k \alpha, \alpha) = 1 \text{ for any } x \in L_{k,K}(f) \text{ and } \alpha \in B.$$ (7)

Taking average

$$\frac{1}{m(B)} \int_B h(x - n_k \alpha, \alpha)dm(\alpha) = 1 \text{ for } k > K \text{ and } x \in L_{k,K}(f).$$ (8)

Keep α fixed and select a character $\gamma \in \hat{G}$. Consider in the Fourier-series of $h(x, \alpha)$ the coefficient $c_\gamma(\alpha)$ corresponding to this character, that is,

$$c_\gamma(\alpha) = \int_G h(x, \alpha)\gamma(-x)dm(x).$$ (9)

Since $h(x, \alpha)$ is a bounded measurable function, the function $c_\gamma(\alpha)$ is also bounded and measurable. Then

$$h(x, \alpha) \sim \sum_{\gamma \in \hat{G}} c_\gamma(\alpha)\gamma(x).$$ (10)

If $\gamma_0(x) \equiv 1$ then by (6) we have

$$c_{\gamma_0}(\alpha) = 0 \text{ for any } \alpha \in G.$$ (11)

For a fixed $\alpha \in B$ we have

$$h(x - n_k \alpha, \alpha) \sim \sum_{\gamma \in \hat{G}} c_\gamma(\alpha)\gamma(-n_k \alpha)\gamma(x).$$ (12)
By (8)

\[m(L_{k,K}(f)) \leq \int_G \left| \frac{1}{m(B)} \int_B h(x-n_k\alpha, \alpha)dm(\alpha) \right|^2 dm(x) \quad \text{(13)} \]

\[= \int_G |\varphi_k(x)|^2 dm(x) = \Theta, \]

where \(\varphi_k(x) = \frac{1}{m(B)} \int_B h(x-n_k\alpha, \alpha)dm(\alpha) \) is a bounded measurable function. If \(\gamma \) is a given character then using that \(h \) is bounded and recalling (9) we obtain

\[
\hat{\varphi}_k(\gamma) = \int_G \frac{1}{m(B)} \int_B h(x-n_k\alpha, \alpha)dm(\alpha)\gamma(-x)dm(x) = \frac{1}{m(B)} \int_B \int_G h(x-n_k\alpha, \alpha)\gamma(-x)dm(x)dm(\alpha) = \frac{1}{m(B)} \int_G \chi_B(\alpha) \int_G h(u, \alpha)\gamma(-u-n_k\alpha)dm(u)dm(\alpha) = \frac{1}{m(B)} \int_G \chi_B(\alpha) \gamma(-n_k\alpha) \int_G h(u, \alpha)\gamma(-u)dm(u)dm(\alpha) = \frac{1}{m(B)} \int_G \chi_B(\alpha) \gamma(-n_k\alpha) c_\gamma(\alpha)dm(\alpha).
\]

By using the Parseval formula we can continue \(\Theta \) in (13) to obtain

\[m(L_{k,K}(f)) \leq \sum_{\gamma \in \hat{G}} |\hat{\varphi}_k(\gamma)|^2 = \sum_{\gamma \in \hat{G}} \frac{1}{(m(B))^2} \left| \int_G \chi_B(\alpha) \gamma(-n_k\alpha)c_\gamma(\alpha)dm(\alpha) \right|^2 = \frac{1}{(m(B))^2} \sum_{\gamma \in \hat{G}} \left| \int_G \chi_B(\alpha)c_\gamma(\alpha)\gamma^{nk}(-\alpha)dm(\alpha) \right|^2 \quad \text{(15)} \]

Since \(\chi_B(\alpha)c_\gamma(\alpha) \) is a bounded measurable function and \(\gamma^{nk} \in \hat{G} \), the expression \(\int_G \chi_B(\alpha)c_\gamma(\alpha)\gamma^{nk}(-\alpha)dm(\alpha) \) is a Fourier coefficient of this function.

Now we use that \(G \) is connected and hence \(\hat{G} \) is torsion-free. If \(\gamma^{nk} = \gamma^{nk'} \) then \(\gamma^{nk-k} = \gamma_0 \equiv 1 \), but \(\gamma \) is of infinite order and hence it is only possible if \(n_k - n_{k'} = 0 \), that is \(k = k' \). Hence for \(k \neq k' \) the characters \(\gamma^{nk} \) and \(\gamma^{nk'} \) are different. By Parseval’s formula for a fixed \(\gamma \in \hat{G} \)

\[\sum_{k=K}^{\infty} \left| \int_G \chi_B(\alpha)c_\gamma(\alpha)\gamma^{nk}(-\alpha)dm(\alpha) \right|^2 \leq \int_G |\chi_B(\alpha)c_\gamma(\alpha)|^2 dm(\alpha). \quad \text{(16)} \]
This, Parseval’s formula, (5), (9) and (15) yield

\[
\sum_{k=K+1}^{\infty} m(L_{k,K}(f)) \leq \frac{1}{(m(B))^2} \sum_{\gamma \in \hat{G}} \int_G |\chi_B(\alpha) c_\gamma(\alpha)|^2 \, dm(\alpha)
\]

\[
= \frac{1}{(m(B))^2} \int_G \chi_B(\alpha) \sum_{\gamma \in \hat{G}} |c_\gamma(\alpha)|^2 \, dm(\alpha)
\]

(17)

\[
= \frac{1}{(m(B))^2} \int_G \chi_B(\alpha) \int_G |h(x,\alpha)|^2 dm(x) dm(\alpha) < \infty.
\]

Since \(\int_G |f| \leq K \cdot \sum_{k=0}^{\infty} m(L_{k,K}(f)) \) from (17) and \(m(G) = 1 \) it follows that \(f \in L^1(G) \).

This completes the proof of the case of connected \(G \).

Next we show how one can reduce the case of a locally connected \(G \) to the connected case. If \(G \) is locally connected then by [8, 24.45] if \(C \) denotes the component of \(G \) containing \(O_G \) (the neutral element of \(G \)) then \(C \) is an open subgroup of \(G \) and \(G \) is topologically isomorphic to \(C \times (G/C) \). Since \(G \) is compact \(G/C \) should be finite. Suppose that its order is \(n \). Using that \(G = C \times (G/C) \) we write the elements of \(G \) in the form \(g = (g_1, g_2) \) with \(g_1 \in C, g_2 \in G/C \).

Suppose that \(f \notin L^1(G) \) is measurable and \(m(G_{f,b}) > 0 \). Set

\[
X_{\alpha,f} = \left\{ x \in G : \limsup_{k \to +\infty} \frac{|f(x + n_k \alpha)|}{k} < +\infty \right\}.
\]

If \(\alpha \in G_{f,b} \) then \(m(X_{\alpha,f}) = 1 \). Suppose that \(g_j, j = 1,\ldots,n \) is a list of all elements of \(G/C \).

For \(x = (x_1, x_2) \in G \) define

\[
f^*(x) = f^*(x_1, x_2) = \sum_{j=1}^{n} |f(x_1, x_2 + g_j^*)|.
\]

Set

\[
X_{\alpha,f}^* = \bigcap_{j=1}^{n} \left(X_{\alpha,f} + (0_C, g_j^*) \right).
\]

Clearly \(m(X_{\alpha,f}) = 1 \) implies \(m(X_{\alpha,f}^*) = 1 \).

For \(x \in X_{\alpha,f}^* \) we have \(\limsup_{k \to +\infty} \frac{|f^*(x + n_k \alpha)|}{k} < +\infty \). Since \(f^* \) is not depending on its second coordinate we have \(f^*(x + n_k(\alpha_1, \alpha_2)) = f^*(x + \)
Define $f^{**} : C \to \mathbb{R}$ such that $f^{**}(x_1) = f^*(x_1, 0_{G/C})$. Since we assumed that $f \notin L^1(G)$ we have $f^* \notin L^1(G)$ and this implies $f^{**} \notin L^1(C)$.

Set

$$\Gamma^*_{f,b} = \pi^*_C(\Gamma_{f,b}) = \{ \alpha_1 : \exists \alpha_2 \in G/C \text{ such that } \alpha = (\alpha_1, \alpha_2) \in \Gamma_{f,b} \}.$$

Then for $\alpha_1 \in \Gamma^*_{f,b}$ we have

$$\limsup_{k \to \infty} \frac{|f^{**}(x_1 + n_k \alpha_1)|}{k} < +\infty. \quad (18)$$

Since the Haar measure on C is a positive constant multiple of the Haar measure on G restricted to C, on the compact connected Abelian group C we would obtain a measurable function $f^{**} \notin L^1(C)$ such that for a set of positive measure of rotations (18) holds. This would contradict the first part of this proof concerning connected groups.

Theorem 1 says that if we do not have “too much torsion” in \hat{G} then from $m(\Gamma_{f,b}) > 0$ it follows that $f \in L^1(G)$. In the next definition we define what we mean by “a lot of torsion” in a group.

Definition 3. We say that the group G contains infinitely many multiple torsion if

1. either there is a prime number p such that G contains a subgroup algebraically isomorphic to the direct sum $(\mathbb{Z}/p) \oplus (\mathbb{Z}/p) \oplus \ldots$ (countably many copies of \mathbb{Z}/p),

2. or there are infinitely many different prime numbers p_1, p_2, \ldots such that G contains for any j subgroups of the form $(\mathbb{Z}/p_j) \times (\mathbb{Z}/p_j)$.

Theorem 4. Suppose that (n_k) is a strictly monotone increasing sequence of integers and G is a compact Abelian group such that its dual group \hat{G} contains infinitely many multiple torsion. Then there exists a measurable $f \notin L^1(G)$ such that

$$m(\Gamma_{f,0}) = m(\Gamma_{f,b}) = 1,$$

where m is the Haar-measure on G. \quad (19)

Proof. First suppose that in Definition 3 property (i) holds for \hat{G}. Then for any k we can select a subgroup \hat{G}_k in \hat{G} such that it is isomorphic to $(\mathbb{Z}/p)_k \times (\mathbb{Z}/p)_k \times \cdots \times (\mathbb{Z}/p)_k$. Suppose that the characters $\gamma_1, \ldots, \gamma_k$ are the generators of \hat{G}_k.

Put $H_k = \bigcap_{j=1}^{k} \gamma_j^{-1}(1)$. Then H_k is a closed subgroup of G. Since $y \in x + H_k$, that is $y - x \in H_k$ if and only if $\gamma_j(y) = \gamma_j(x)$ for $j = 1, \ldots, k$, which means that $\gamma_j(y - x) = \gamma_j(y)/\gamma_j(x) = 1$ for $j = 1, \ldots, k$ one can see that G is tiled with p^k many translated copies of H_k. The sets $x + H_k$ are all closed and therefore H_k is a closed-open subgroup of G.

We also have
\[m(H_k) = \frac{1}{p^k}. \tag{20} \]

Set $f_k(x) = p^k$ if $x \in H_k$ and $f_k(x) = 0$ otherwise.

Put $f = \sum_{k=1}^{\infty} f_k$. By the Borel-Cantelli lemma and (20) the function f is m a.e. finite. It is also clear that f is measurable and $f \notin L^1(G)$.

Suppose $\alpha \in G$ is arbitrary. Set $X_k = \bigcup_{j=0}^{p^{-1}k} H_k - j\alpha$. Then $m(X_k) = p^{-k+1}$ and by the Borel-Cantelli lemma m a.e. x belongs to only finitely many X_k. If $x \notin X_k$ then $\forall j \in \mathbb{N}$, $x + j\alpha \notin H_k$ and hence
\[f_k(x + j\alpha) = 0 \text{ for any } j \in \mathbb{N}. \tag{21} \]

Therefore, $\frac{f(x + n_k\alpha)}{k} \to 0$ for m a.e. $x \in G$ and $\Gamma_{f,0} = G$.

If in Definition 3 property (ii) holds for \widehat{G} then for any k select \widehat{G}_k in \widehat{G} such that it is isomorphic to $(\mathbb{Z}/p_k) \times (\mathbb{Z}/p_k)$. We suppose that $\gamma_{1,k}$ and $\gamma_{2,k}$ are the generators of \widehat{G}_k. Put $H_k = \gamma_{1,k}^{-1}(1) \cap \gamma_{2,k}^{-1}(1)$. One can see, similar to the previous case, that G is tiled by p^k_2 many translated copies of H_k.

Turning to a subsequence if necessary, we can suppose that
\[\sum_{k=1}^{\infty} \frac{1}{p_k} < +\infty. \tag{22} \]

We also have
\[m(H_k) = \frac{1}{p_k^2}. \tag{23} \]

Set $f_k(x) = p_k^2$ if $x \in H_k$ and $f_k(x) = 0$ otherwise.

Put $f = \sum_{k=1}^{\infty} f_k$. Again, it is clear that f is m a.e. finite, measurable and $f \notin L^1(G)$. For an arbitrary $\alpha \in G$ one can define $X_k = \bigcup_{j=0}^{p^{-1}k} H_k - j\alpha$. Then $m(X_k) = \frac{1}{p_k}$.

From (22) and from the Borel-Cantelli lemma it follows that m a.e. x belongs to only finitely many X_k. One can conclude the proof as we did it in the previous case. \square

It is natural to ask for a version of Theorem 4 for the non-conventional ergodic averages with $m(\Gamma_f) = 1$ in (19). For convergence of the non-conventional ergodic averages some arithmetic assumptions about n_k are
needed.
We recall from [10] Definition 1.2 with some notational adjustment.

Definition 5. The sequence \((n_k)\) is ergodic mod \(q\) if for any \(h \in \mathbb{Z}\)

\[
\lim_{N \to \infty} \frac{\sum_{k=0}^{N} \chi_{h,q}(n_k)}{N + 1} = \frac{1}{q},
\]

(24)

Where \(\chi_{h,q}(x) = 1\) if \(x \equiv h \mod q\) and \(\chi_{h,q}(x) = 0\) otherwise.
A sequence \((n_k)\) is ergodic for periodic systems if it is ergodic mod \(q\) for every \(q \in \mathbb{N}\).

For ergodic sequences with essentially the same proof we can state the following version of Theorem 4:

Theorem 6. Suppose that \(n_k\) is a strictly monotone, ergodic sequence for periodic systems and \(G\) is a compact Abelian group such that its dual group \(\hat{G}\) contains infinitely many multiple torsion. Then there exist a measurable \(f \notin L^1(G)\) such that \(\Gamma_f = G\), and hence \(m(\Gamma_f) = 1\).

Proof. As we mentioned earlier the argument of the proof of Theorem 4 is applicable. One needs to add the observation that if \(x \in X_k\) then the ergodicity of \(n_k\) for periodic systems implies that \(M_{\alpha}^N f_k\) converges. If \(x \notin X_k\) then (21) can be used. Hence \(M_{\alpha}^N f\) converges for all \(\alpha \in G\) for a.e. \(x\). \(\square\)

In Theorem 4 we saw that if there is “lots of torsion” in \(\hat{G}\), that is, \(G\) is “highly disconnected” then there are measurable functions \(f\) not in \(L^1\) for which \(m(\Gamma_{f,0}) = 1\). Since the \(p\)-adic integers, \(\mathbb{Z}_p\) are the building blocks of 0-dimensional compact Abelian groups ([8, Theorem 25.22]) it is natural to consider them. If we take a countable product of \(\mathbb{Z}_p\) with \(p\) fixed then the dual group will be the direct sum of \(Z(p^n)\)’s and will contain a subgroup algebraically isomorphic to the direct sum \((Z/p) \oplus (Z/p) \oplus \ldots\).

Then Theorem 4 is applicable.

If one considers an individual \(Z_p\) then its dual group is \(Z(p^\infty)\) with all elements of finite order, so still there seems to be “lots of torsion” in the dual group. It is also clear that arithmetic properties of \(n_k\) might matter if we consider \(Z_p\). For us it was quite surprising that if one considers ordinary ergodic averages, that is, \(n_k = k\) then \(Z_p\) behaves like a locally connected group and the following theorem is true.

Theorem 7. Suppose that \(n_k = k\), and \(p\) is a fixed prime number. We consider \(G = Z_p\), the group of \(p\)-adic integers. Then for any measurable function \(f : G \to \mathbb{R}\) from \(m(\Gamma_{f,k}) > 0\) it follows that \(f \in L^1(G)\).
Before turning to the proof of Theorem 7 we need some notation and a Claim simplifying the proof of Theorem 7. Denote by \(\Gamma_{f,b}^j \), \(j = -1, 0, 1, \ldots \) the set of those \(\alpha = (\alpha_0, \alpha_1, \ldots) \in \Gamma_{f,b} \) for which \(\alpha_{j+1} \neq 0 \) but \(\alpha_0 = \cdots = \alpha_j = 0 \). From \(m(\Gamma_{f,b}) > 0 \) it follows that there exists \(j_0 \) such that \(m(\hat{\Gamma}_{f,b}^{j_0}) > 0 \). Given a finite string \((x_0, \ldots, x_j)\) we denote by \([x_0, \ldots, x_j] \) the corresponding cylinder set in \(G \), that is,

\[
[x_0, \ldots, x_j] = \{(x'_0, x'_1, \ldots) \in G : (x'_0, \ldots, x'_j) = (x_0, \ldots, x_j)\}.
\]

Claim 8. If from \(m(\Gamma_{f,b}^{-1}) > 0 \) it follows that \(f \in L^1(G) \), then Theorem 7 is also true.

Proof. As mentioned above if \(m(\Gamma_{f,b}) > 0 \) then we can choose \(j_0 \) such that \(m(\hat{\Gamma}_{f,b}^{j_0}) > 0 \). Then for \(\alpha \in \Gamma_{f,b}^{j_0} \) for any cylinder \([x_0, \ldots, x_{j_0}]\) we have

\[
[x_0, \ldots, x_{j_0}] + \alpha = [x_0, \ldots, x_{j_0}].
\]

If \(\sigma \) is the one-sided shift on \(Z_p \), that is, \(\sigma(x_0, x_1, \ldots) = (x_1, \ldots) \) then for \(\alpha \in \Gamma_{f,b}^{j_0} \) we have \(\sigma^{j_0+1}(x + \alpha) = \sigma^{j_0+1}x + \sigma^{j_0+1}\alpha \).

For an \(x' \in G \) we define the function \(f_{x_0,\ldots,x_{j_0}}(x') = f(x_0, \ldots, x_{j_0}, x') \), where \((x_0, \ldots, x_{j_0}, x') \) is the concatenation of the finite string \((x_0, \ldots, x_{j_0})\) and \(x' \in G = Z_p \). Then \(\hat{\Gamma}_{f,x_0,\ldots,x_{j_0}} \supset \Gamma_{f,b}^{j_0} \) and we can apply the Claim for \(f_{x_0,\ldots,x_{j_0}} \) to obtain that \(f_{x_0,\ldots,x_{j_0}} \in L^1(G) \), that is, \(f \in L^1([x_0, \ldots, x_{j_0}]) \). Since this holds for any cylinder set \([x_0, \ldots, x_{j_0}]\) we obtain that \(f \in L^1(G) \). \(\square \)

Proof of Theorem 7. By Claim 8 we can assume that \(m(\Gamma_{f,b}^{-1}) > 0 \). We need to adjust the proof of Theorem 1 for the case of \(G = Z_p \). The key difficulty is the torsion in \(\hat{G} = Z(p^\infty) \) which makes it impossible to use a direct argument which lead to (16). Anyway, we start to argue as in the proof of Theorem 1, keeping in mind that now \(n_k = k \). We introduce the sets \(G_{\alpha,K}, B \subset \Gamma_{f,b}^{-1} \), \(L_k(f) \) as in (2), (3), and (4), respectively. We fix \(K \) and define the set \(H_\alpha \) and the auxiliary function \(h(x,\alpha) \) as in (5). We have (6) again.

Our aim is to establish that for a suitable \(\kappa_0 \)

\[
\sum_{\kappa \geq \kappa_0} p^\kappa m(L_{p^{\kappa+2},K}(f)) < \infty. \tag{25}
\]

Suppose that the function \(\varphi \) equals \(p^{\kappa+3}K \) on \(L_{p^{\kappa+2},K}(f) \setminus L_{p^{\kappa+3},K}(f), \kappa = \kappa_0, \kappa_0 + 1, \ldots \) and equals \(K \cdot p^{\kappa_0+2} \) on \(G \setminus L_{p^{\kappa_0+2},K}(f) \). Then \(\varphi \geq |f| \) and by (25)

\[
\int_G \varphi dm \leq K \cdot p^{\kappa_0+2}m(G) + \sum_{\kappa = \kappa_0}^{\infty} p^{\kappa+3} \cdot K m(L_{p^{\kappa+2},K}(f)) < + \infty. \tag{26}
\]

This implies that \(f \in L^1(G) \).
Hence we need to establish (25). Choose and fix \(\kappa_0 \in \mathbb{N} \) such that \(p^{\kappa_0} > K \) and suppose that \(\kappa \geq \kappa_0 \).

Then, keeping in mind that \(L_{k,K}(f) \supseteq L_{p^{\kappa+2},K}(f) \) for \(k \leq p^{\kappa+2} \) we have instead of (7)

\[
h(x - k\alpha, \alpha) = 1 \quad \text{for any } \alpha \in B, \, K < k < p^{\kappa+2} \text{ and } x \in L_{p^{\kappa+2},K}(f).
\] (27)

Let

\[
h_k(x, \alpha) = \frac{1}{p^\kappa} \sum_{k=p^\kappa}^{2p^\kappa-1} h(x - k\alpha, \alpha).
\] (28)

Then by (27)

\[
h_k(x - k\alpha, \alpha) = 1 \quad \text{for any } \alpha \in B, \, 0 \leq k < p^{\kappa+2} - 2p^\kappa \text{ and } x \in L_{p^{\kappa+2},K}(f)
\] (29)

Taking average on \(B \)

\[
\frac{1}{m(B)} \int_B h_k(x - k\alpha, \alpha) \, dm(\alpha) = 1
\] (30)

for \(\kappa \geq \kappa_0, \, 0 \leq k < p^{\kappa+2} - 2p^\kappa \) and \(x \in L_{p^{\kappa+2},K}(f) \).

Now we return to \(h(x, \alpha) \) and we define \(c_\gamma(\alpha) \) as in (9). Again, \(c_\gamma(\alpha) \) is a bounded, measurable function and (10) holds.

Denoting again by \(\gamma_0(x) \) the identically 1 character, the neutral element of \(\hat{G} \) we also have (11) satisfied. For \(h_\kappa(x, \alpha) \) we have

\[
h_\kappa(x, \alpha) \sim \sum_{\gamma \in \hat{G}} c_{\gamma,\kappa}(\alpha) \gamma(x) = \sum_{\gamma \in \hat{G}} c_{\gamma}(\alpha) \left(\frac{1}{p^\kappa} \sum_{k=p^\kappa}^{2p^\kappa-1} \gamma(-k\alpha) \right) \gamma(x).
\] (31)

Since \(\hat{G} = Z(p^\infty) \), the order of \(\gamma \) is a power of \(p \). We denote it by \(\text{ord}(\gamma) \).

A \(\gamma \in \hat{G} \) of order \(p^r, \, r > 0 \) is of the form

\[
\gamma(x) = \exp \left(\frac{2\pi il}{p^r} (x_0 + px_1 + \cdots + p^{r-1}x_{r-1}) \right)
\] (32)

for \(x = (x_0, x_1, \ldots) \in G = \mathbb{Z}_p \) with \(l \) not divisible by \(p \).

Since \(B \subset \Gamma_{f,b}^{-1} \), for \(\alpha \in B \) we have \(\alpha_0 \neq 0 \) which implies \(\gamma(-\alpha) \neq 1 \) and if \(\gamma \) is of order \(p^r, \, r > 0 \) then \(\gamma(-\alpha) \in \mathbb{C} \) is also of order \(p^r, \, r > 0 \). Hence for \(\text{ord}(\gamma) = p^r \leq p^\kappa \) and \(\alpha \in B \) we have

\[
\sum_{k=p^\kappa}^{2p^\kappa-1} \gamma(-k\alpha) = \sum_{k=p^\kappa}^{2p^\kappa-1} \gamma^k(-\alpha) = \gamma(-p^\kappa \alpha) \frac{1 - \gamma(p^\kappa \alpha)}{1 - \gamma(-\alpha)} = 0.
\] (33)
This way we can get rid of some characters with small torsion in the Fourier-series of \(h_\kappa(x, \alpha) \).

Recalling that \(c_{\gamma_0}(\alpha) = \int_G h(x, \alpha) \cdot 1 \, dm(\alpha) = 0 \) by (10) we have in (31)

\[
c_{\gamma_0,\kappa}(\alpha) = 0 \quad \text{if} \quad \alpha \in B.
\]

(34)

Using (31) again we have

\[
h_\kappa(x - k\alpha, \alpha) \sim \sum_{\gamma \in \hat{G}} c_{\gamma,\kappa}(\alpha) \gamma(-k\alpha) \gamma(x)
\]

(35)

and by (30) for any \(0 \leq k < p^{\kappa+2} - 2p^\kappa \)

\[
m(L_{p^{\kappa+2},K}(f)) \leq \int_G \left| \frac{1}{m(B)} \int_B h_\kappa(x - k\alpha, \alpha) dm(\alpha) \right|^2 \, dm(x)
\]

(36)

\[
= \int_G |\varphi_{\kappa,k}(x)|^2 \, dm(x),
\]

where \(\varphi_{\kappa,k}(x) = \frac{1}{m(B)} \int_B h_\kappa(x - k\alpha, \alpha) dm(\alpha) \) is a bounded measurable function.

Recall that by (31) we can express the Fourier-coefficients of \(h_\kappa \) by those of \(h \), that is

\[
c_{\gamma,\kappa}(\alpha) = \int_G h_\kappa(x, \alpha) \gamma(-x) \, dm(x) = c_\gamma(\alpha) \frac{1}{p^\kappa} \sum_{k=p^\kappa}^{2p^\kappa-1} \gamma(-k\alpha).
\]

(37)

Therefore,

\[
\hat{\varphi}_{\kappa,k}(\gamma) = \int_G \frac{1}{m(B)} \int_B h_\kappa(x - k\alpha, \alpha) dm(\alpha) \gamma(-x) \, dm(x)
\]

\[
= \frac{1}{m(B)} \int_B \int_G h_\kappa(x - k\alpha, \alpha) \gamma(-x) dm(x) dm(\alpha)
\]

(38)

\[
= \frac{1}{m(B)} \int_G \chi_B(\alpha) \cdot \int_G h_\kappa(u, \alpha) \gamma(-u - k\alpha) dm(u) dm(\alpha)
\]

\[
= \frac{1}{m(B)} \int_G \chi_B(\alpha) \gamma(-k\alpha) c_{\gamma,\kappa}(\alpha) dm(\alpha).
\]

If \(\gamma \neq \gamma_0 \) and \(\text{ord}(\gamma) \leq p^\kappa \) then by (33) and (37) we have \(c_{\gamma,\kappa}(\alpha) = 0 \) for any \(\alpha \in B \), and hence \(\hat{\varphi}_{\kappa,k}(\gamma) = 0 \).

Recall from (34) that if \(\alpha \in B \) then \(c_{\gamma_0,\kappa}(\alpha) = 0 \). Hence \(\hat{\varphi}_{\kappa,k}(\gamma_0) = 0 \) holds in this case as well.
Now suppose that \(\gamma^{p} \neq \gamma_{0} \). Then \(\text{ord}(\gamma) \geq p^{k+1} \) and for \(k = 0, \ldots, p^{k+1} - 1 \) the characters \(\gamma^{k} \) are different.

By using the Parseval-formula we can continue (36) to obtain for any \(0 \leq k < p^{k+2} - 2p^{k} \) that

\[
m(\mathcal{L}_{p^{k+2},K}(f)) \leq \sum_{\gamma \in \mathcal{G}} |\hat{\varphi}_{\kappa,k}(\gamma)|^{2}
\]

\[
= \sum_{\gamma \in \mathcal{G}, \gamma^{p^{k}} \neq \gamma_{0}} \frac{1}{(m(B))^{2}} \cdot \left| \int_{\mathcal{G}} \chi_{B}(\alpha) \gamma(-k\alpha) c_{\gamma,\kappa}(\alpha) dm(\alpha) \right|^{2}.
\]

Since \(p \geq 2 \) implies \(p^{k+2} \geq 3p^{k} \) we can use (29) and (39) for \(k = 0, \ldots, p^{k} - 1 \). Adding equation (39) for all \(\kappa \geq \kappa_{0} \) and \(k = 0, \ldots, p^{k} - 1 \) we need to estimate

\[
\sum_{\kappa \geq \kappa_{0}}\sum_{k=0}^{p^{k}-1} p^{k} m(\mathcal{L}_{p^{k+2},K}(f))
\]

\[
\leq \sum_{\kappa \geq \kappa_{0}} \sum_{\gamma \in \mathcal{G}, \gamma^{p^{k}} \neq \gamma_{0}} \frac{1}{(m(B))^{2}} \cdot \left| \int_{\mathcal{G}} \chi_{B}(\alpha) c_{\gamma,\kappa}(\alpha) \gamma(-k\alpha) dm(\alpha) \right|^{2}.
\]

Using (31) and (37) first we estimate for \(\kappa \geq \kappa_{0} \)

\[
\sum_{k=0}^{p^{k}-1} \left| \int_{\mathcal{G}} \chi_{B}(\alpha) c_{\gamma,\kappa}(\alpha) \gamma(-k\alpha) dm(\alpha) \right|^{2}
\]

\[
= \sum_{k=0}^{p^{k}-1} \left| \int_{\mathcal{G}} \chi_{B}(\alpha) c_{\gamma}(\alpha) \frac{1}{p^{k}} \sum_{k'=p^{k}}^{2p^{k}-1} \gamma(-(k'+k)\alpha) dm(\alpha) \right|^{2} = **
\]

in the last expression \(k' + k \) can take values between \(p^{k} \) and \(3p^{k} - 2 \). If \(p \geq 3 \) then \(3p^{k} - 2 \leq p^{k+1} - 1 \) so for the moment we suppose that \(p \geq 3 \). In the end of this proof we will point out the little adjustments which we need for the case \(p = 2 \).

For \(p^{k} \leq j \leq 3p^{k} - 2 \leq p^{k+1} - 1 \) we denote by \(w_{j}' \) the number of those couples \((k, k') \) for which \(0 \leq k \leq p^{k} - 1, p^{k} \leq k' \leq 2p^{k} - 1 \) and \(k + k' = j \). Obviously, \(w_{j}' \leq p^{k} \). Set \(w_{j} = w_{j}' / p^{k} \leq 1 \). We select these \(w_{j} \) for all \(\kappa_{0} \leq \kappa \leq \text{ord}(\gamma) \). For those values of \(j \) for which we have not defined \(w_{j} \) yet we set \(w_{j} = 0 \).

By using this notation we can continue ** from (41)

\[
** \leq \sum_{j=p^{k}}^{p^{k+1}-1} w_{j} \left| \int_{\mathcal{G}} \chi_{B}(\alpha) c_{\gamma}(\alpha) \cdot \gamma(-j\alpha) dm(\alpha) \right|^{2}
\]

(42)
Using (41) and (42) while continuing the estimation of (40) we obtain
\[
\sum_{\kappa \geq \kappa_0} p^\kappa \mu(L_{p^\kappa+2,K}(f)) \leq
\]
\[
\sum_{\kappa \geq \kappa_0} \sum_{\gamma \in G} \frac{1}{(m(B))^2} p^{\kappa+1-1} \int_G |\chi_B(\alpha) c_\gamma(\alpha) \gamma(-j\alpha) dm(\alpha)|^2.
\]
Since for a fixed γ the characters γ^{-j} are different, for different values $0 \leq j < \text{ord}(\gamma)$ by Parseval's Theorem we infer
\[
\sum_{j=1}^{\text{ord}(\gamma)-1} |\int_G \chi_B(\alpha) c_\gamma(\alpha) \gamma(-j\alpha) dm(\alpha)|^2 \leq \int_G |\chi_B(\alpha) c_\gamma(\alpha)|^2 dm(\alpha).
\]
Using this in (43) we obtain
\[
\sum_{\kappa \geq \kappa_0} p^\kappa \mu(L_{p^\kappa+2,K}(f)) \leq \frac{1}{(m(B))^2} \sum_{\gamma \in G} \int_G |\chi_B(\alpha) c_\gamma(\alpha)|^2 dm(\alpha)
\]
\[
= \frac{1}{(m(B))^2} \int_G \chi_B(\alpha) \sum_{\gamma \in G} |c_\gamma(\alpha)|^2 dm(\alpha)
\]
\[
= \frac{1}{(m(B))^2} \int_G \chi_B(\alpha) \int_G |h(x,\alpha)|^2 dm(x) dm(\alpha) < +\infty.
\]
This completes the proof if $p \geq 3$.

In case of $p = 2$ the intervals $p^\kappa \leq j \leq 3p^\kappa - 2$ are not disjoint, but $3p^\kappa - 2 \leq p^{\kappa+2} - 1$. Instead of (43) we could obtain
\[
\sum_{\kappa \geq \kappa_0} p^{\kappa+1} \mu(L_{p^{\kappa+1},K}(f)) \leq 2 \sum_{\gamma \in G} \sum_{j=1}^{2\text{ord}(\gamma)-1} \frac{1}{(m(B))^2} \int_G |\chi_B(\alpha) c_\gamma(\alpha) \gamma(-j\alpha) dm(\alpha)|^2.
\]
For a fixed γ the characters $\gamma^{-j}(\alpha)$, $j \leq 2\text{ord}(\gamma) - 1$ are not different but for each $j \leq 2\text{ord}(\gamma) - 1$ there is at most one other $j' \leq 2\text{ord}(\gamma) - 1$ such that $\gamma^{-j} = \gamma^{-j'}$, hence
\[
\sum_{j=1}^{2\text{ord}(\gamma)-1} |\int_G \chi_B(\alpha) c_\gamma(\alpha) \gamma(-j\alpha) dm(\alpha)|^2 \leq 2 \int_G |\chi_B(\alpha) c_\gamma(\alpha)|^2 dm(\alpha).
\]
The conclusion of the proof is similar to the $p \geq 3$ case.

References

